1 条题解
-
0
大概意思就是:
数组sum[i][j]表示从第1到第i头cow属性j的出现次数。
所以题目要求等价为:
求满足
sum[i][0]-sum[j][0]=sum[i][1]-sum[j][1]=.....=sum[i][k-1]-sum[j][k-1] (j<i)
中最大的i-j
将上式变换可得到
sum[i][1]-sum[i][0] = sum[j][1]-sum[j][0]
sum[i][2]-sum[i][0] = sum[j][2]-sum[j][0]
......
sum[i][k-1]-sum[i][0] = sum[j][k-1]-sum[j][0]
令C[i][y]=sum[i][y]-sum[i][0] (0<y<k)
初始条件C[0][0~k-1]=0
所以只需求满足C[i][]==C[j][] 中最大的i-j,其中0<=j<i<=n。
C[i][]==C[j][] 即二维数组C[][]第i行与第j行对应列的值相等,
那么原题就转化为求C数组中 相等且相隔最远的两行的距离i-j
大概意思就是:
数组sum[i][j]表示从第1到第i头cow属性j的出现次数。
所以题目要求等价为:
求满足
sum[i][0]-sum[j][0]=sum[i][1]-sum[j][1]=.....=sum[i][k-1]-sum[j][k-1] (j<i)
中最大的i-j
将上式变换可得到
sum[i][1]-sum[i][0] = sum[j][1]-sum[j][0]
sum[i][2]-sum[i][0] = sum[j][2]-sum[j][0]
......
sum[i][k-1]-sum[i][0] = sum[j][k-1]-sum[j][0]
令C[i][y]=sum[i][y]-sum[i][0] (0<y<k)
初始条件C[0][0~k-1]=0
所以只需求满足C[i][]==C[j][] 中最大的i-j,其中0<=j<i<=n。
C[i][]==C[j][] 即二维数组C[][]第i行与第j行对应列的值相等,
那么原题就转化为求C数组中 相等且相隔最远的两行的距离i-j
以样例为例
7 3 7 6 7 2 1 4 2
先把7个十进制特征数转换为二进制,并逆序存放到特征数组feature[ ][ ],得到:
7 ->1 1 1
6 ->0 1 1
7 ->1 1 1
2 ->0 1 0
1 ->1 0 0
4 ->0 0 1
2 ->0 1 0
(行数为cow编号,自上而下从1开始;列数为特征编号,自左到右从0开始)
再求sum数组,逐行累加得,sum数组为
1 1 1
1 2 2
2 3 3
2 4 3
3 4 3
3 4 4
3 5 4
再利用C[i][y]=sum[i][y]-sum[i][0]求C数组,即所有列都减去第一列
注意C数组有第0行,为全0
0 0 0 -> 第0行
0 0 0
0 1 1 <------
0 1 1
0 2 1
0 1 0
0 1 1 <-------
0 2 1
显然第2行与第6行相等,均为011,且距离最远,距离为6-2=4,这就是所求。
- 1
信息
- ID
- 1564
- 时间
- 1000ms
- 内存
- 256MiB
- 难度
- 10
- 标签
- 递交数
- 1
- 已通过
- 1
- 上传者