E. 【基础】自私的食䓍者(sgraze)

    传统题 文件IO:sgraze 1000ms 256MiB

【基础】自私的食䓍者(sgraze)

该比赛已结束,您无法在比赛模式下递交该题目。您可以点击“在题库中打开”以普通模式查看和递交本题。

题目描述

Each of Farmer John's N (1 <= N <= 50,000) cows likes to graze in a certain part of the pasture, which can be thought of as a large one-dimeensional number line. Cow i's favorite grazing range starts at location S_i and ends at location E_i (1 <= S_i < E_i; S_i < E_i <= 100,000,000).

Most folks know the cows are quite selfish; no cow wants to share any of its grazing area with another. Thus, two cows i and j can only graze at the same time if either S_i >= E_j or E_i <= S_j. FJ would like to know the maximum number of cows that can graze at the same time for a given set of cows and their preferences.

Consider a set of 5 cows with ranges shown below:

  ... 1    2    3    4    5    6    7    8    9   10   11   12   13 ...
  ... |----|----|----|----|----|----|----|----|----|----|----|----|----
Cow 1:      <===:===>          :              :              :
Cow 2: <========:==============:==============:=============>:
Cow 3:          :     <====>   :              :              :
Cow 4:          :              :     <========:===>          :
Cow 5:          :              :     <==>     :              :

These ranges represent (2, 4), (1, 12), (4, 5), (7, 10), and (7, 8), respectively.

For a solution, the first, third, and fourth (or fifth) cows can all graze at the same time. If the second cow grazed, no other cows could graze. Also, the fourth and fifth cows cannot graze together, so it is impossible for four or more cows to graze.

约翰有N(1≤N≤50000)头牛,约翰的草地可以认为是一条直线.每只牛只喜欢在某个特定的范围内吃草.第i头牛喜欢在区间(Si,Ei)吃草,1≤Si<Ei≤1,000,000,00.

奶牛们都很自私,他们不喜欢和其他奶牛共享自己喜欢吃草的领域,因此约翰要保证任意

两头牛都不会共享他们喜欢吃草昀领域.如果奶牛i和奶牛J想要同时吃草,那么要满足:Si>=Ej或者Ei≤Sj.约翰想知道在同一时刻,最多可以有多少头奶牛同时吃草?

输入格式

第1行:一个整数N.

第2到N+1行:第i+l行有两个整数Si,Ei.

输出格式

一行一个整数,最多可以有多少头牛同时吃草。

样例 #1

样例输入 #1

5 
2 4 
1 12 
4 5 
7 10 
7 8

样例输出 #1

3

提示

第1,3,4共3只奶牛可以同时吃草,第1,3,5也可以.

2024级高一上期阶段测试(20241227)

未参加
状态
已结束
规则
OI
题目
5
开始于
2024-12-27 17:30
结束于
2024-12-29 17:30
持续时间
3.5 小时
主持人
参赛人数
19