#P57. USACO3.3.3 亚瑟王的宫殿
USACO3.3.3 亚瑟王的宫殿
题目描述
很久以前,亚瑟王和他的骑士习惯每年元旦去庆祝他们的友谊。为了纪念上述事件, 我们把这些故事看作是一个棋盘游戏。有一个国王和若干个骑士被放置在一个由许多方格 组成的棋盘上,没有两个骑士在同一个方格内。 这个例子是标准的 8×8 棋盘
国王可以移动到任何一个相邻的方格,从下图中黑子位置到下图中白子位置前提是他 不掉出棋盘之外。
一个骑士可以从下图中黑子位置移动到下图中白子位置(走“日”字形) 但前提是他 不掉出棋盘之外。
在游戏中,玩家可在每个方格上放不止一个棋子,假定方格足够大,任何棋子都不会 阻碍到其他棋子正常行动。 玩家的任务就是把所有的棋子移动到同一个方格里——用最小的步数。为了完成这个 任务,他必须按照上面所说的规则去移动棋子。另外,玩家可以选择一个骑士跟国王从他 们两个相遇的那个点开始一起行动,这时他们按照骑士的行动规则行动,其他的单独骑士 则自己一直走到集中点。骑士和国王一起走的时候,只算一个人走的步数。
请写一个程序去计算他们集中在一起的最小步数,而且玩家必须自己找出这个集中点。当然,这些 棋子可以在棋盘的任何地方集合。
程序名:camelot
输入格式:
第一行: 两个用空格隔开的整数:R,C 分别为棋盘行和列的长。不超过 26 列,40 行。
第二行到结尾: 输入文件包含了一些有空格隔开的字母/数字对,一行有一个或以 上。第一对为国王的位置,接下来是骑士的位置。可能没有骑士,也可能整个棋盘都是骑 士。行从 1 开始,列从大写字母 A 开始。
输出格式:
单独一行表示棋子集中在一个方格的最小步数。
输入样例#1:
8 8
D 4
A 3 A 8
H 1 H 8
输出样例#1:
10
说明
他们集中在 B5。
骑士 1: A3 - B5 (1 步)
骑士 2: A8 - C7 - B5 (2 步)
骑士 3: H1 - G3 - F5 - D4 (此时国王开始与这个骑士一起走) - B5 (4 步) 骑士 4: H8 - F7 - D6 - B5 (3 步)
1 + 2 + 4 + 3 = 10 步